
1

MODULE III

Syllabus of module 3-Part1

More features of Java: Packages and Interfaces -

Defining Package, CLASSPATH, Access Protection,

Importing Packages, Interfaces.

Exception Handling - Checked Exceptions,

Unchecked Exceptions, try Block and catch Clause,

Multiple catch Clauses, Nested try Statements,

throw, throws and finally.

Interfaces
 Interface is basically a kind of class.

 The difference is that interface can contain only abstract methods and final fields.

 Using the keyword interface, a class can be fully abstracted from its implementation.

i.e. using interface one can specify what the class must do without specifying how it

does it.

 An alternative approach to support Multiple Inheritance

 Syntax :

interface Interfacename

{

variable declaration;

methods declaration;

}

 Variables are declared as follows:

static final type variablename=value;

 Methods are declared as follows:

returntype methodname(parameterlist);

Interfaces
 The Java compiler adds public and abstract keywords before the interface

method. Moreover, it adds public, static and final keywords before data

members.We don’t have to add it explicitly.

 The code for the method(void print() in the above example)
is not included in the interface since it is abstract in nature.

 The class that implements this interface must define the code
for the method

Interfaces
Class Interface

The members of a class can be
constant or variables

The members of an interface are always
declared as constant. It is declared
public static final.

The class definition can contain the
code for each of its methods. That is,
the methods can be abstract or non-
abstract

The methods in an interface are abstract
in nature. There is no code associated
with them. It is later defined by the class
that implements the interface.

It can be instantiated by declaring
objects

It cannot be used to declare objects. It
can only be inherited by a class

It can use various access specifiers
like public, private or protected.

It can only use the public access
specifier.

6

Interfaces
 An interface can also be extended. That is an interface can be

subinterfaced from other interfaces.

 The new subinterface will inherit all the members of the
super interface.

 General form: interface name2 extends name1

{

Body of name2

}interface ItemConstants

{ int code=1001;

string name=”Fan”;

}

interface Item extends ItemConstants

{ void display();

}

Interfaces
 We can combine several interface together into a single

interface.

interface ItemConstants

{

int code=1001;

string name=”Fan”;

}

interface ItemMethods

{

void display();

}

interface Item extends ItemConstants, ItemMethods

{

}

Interfaces
 While interfaces are allowed to extend to other interfaces,

subinterfaces cannot define the methods declared in

superinterfaces.

 Subinterfaces are still interfaces, not classes.

 It is the responsibility of any class that implements the

derived interface to define all the methods.

9

Interfaces
 It is necessary to create a class that inherits the given interface.

 General form: Class classname implements interfacename

{

Body of classname

}

 More General form:

Class classname extends superclass implements interface1,

interface2, …

{

Body of classname

}

interface Area

{

final static float pi=3.14F;

float compute(float x, float y);

}

class Rectangle implements Area

{

public float compute(float x, float y)

{

return x*y;

}

}

class Circle implements Area

{

public float compute(float x, float y)

{

return pi*x*x;

}

}

class InterfaceTest

{

public static void main(String a[])

{

Rectangle rect=new Rectangle();

Circle cir=new Circle();

Area area;

area = rect;

System.out.println("Area of the

rectangle : "+area.compute(10,20));

area = cir;

System.out.println("Area of the

circle : "+area.compute(10,0));

}

}
Output:

Area of the rectangle : 200
Area of the circle : 314

Example: To show that Interfaces support multiple

inheritance

interface AnimalEat

{ void eat(); }

interface AnimalTravel

{ void travel(); }

class Animal implements AnimalEat, AnimalTravel //This is OK

{

public void eat() { System.out.println("Animal is eating");}

public void travel() {System.out.println("Animal is travelling"); } }

public class Demo {

public static void main(String args[]) {

Animal a = new Animal();

a.eat(); o/p Animal is eating

a.travel(); } } Animal is travelling
//Note: This will not be possible if AnimalEat and AnimalTravel are classes

12

class Test

{ float part1, part2;

void getMarks(float m1, float m2)

{

part1=m1; part2=m2;

}

void putMarks()

{ System.out.println("Part1="+part1);

System.out.println("Part2="+part2);

}

}

interface Sports

{

float sportWt=6.0F;

void putWt();

}

class Results extends Test implements Sports

{ float total;

public void putWt()

{ System.out.println("Sports Wt="+sportWt); }

void display()

{ total=part1+part2+sportWt;

putMarks();

putWt();

System.out.println("Total Score="+total);

}

}

class Hybrid

{ public static void main(String a[])

{ Results student1=new Results();

student1.getMarks(27.5F,33.0F);

student1.display();

}

}

Output: Part1= 27.5
Part2 = 33.0
Sports Wt=6.0
Total Score = 66.5

Nested Interface in Java

 We can declare interfaces as member of a class or another

interface. Such an interface is called as member interface

or nested interface.

 Interface in a class

Interfaces (or classes) can have only public and default access

specifiers when declared outside any other class . This

interface declared in a class can either be default, public,

protected not private.

14

Example 1

class NestedInterface {

interface myInterface {

void demo();

}

class Inner implements myInterface {

public void demo() {

System.out.println("Welcome to Nested Interface"); }

}

public static void main(String args[]) {

Inner obj=new NestedInterface().new Inner();

obj.demo();

} // o/p Welcome to Nested Interface

}15

You can also access the nested interface using the class name as −

Example 2

class Test {

interface myInterface { void demo(); }

}

class Sample implements Test.myInterface {

public void demo() {

System.out.println(“Welcome to Nested Interface");

}

public static void main(String args[]) {

Sample obj = new Sample();

obj.demo(); // o/p Welcome to Nested Interface

}

} 16

Abstract class vs. Interfaces

17

Note: Static functions are also allowed in interfaces

Packages
 A package is a group of classes that are defined by a name. That

is, if you want to declare many classes within one element, then
you can declare it within a package.

 Packages group variety of classes and/or interfaces together.

 Packages allow us to use classes from other programs without
physically copying them into the program under development.

 Packages act as containers for classes.

 Java packages are classified into two types:

 Java API Package

 User defined package

Packages : Java API Packages

Package

name

Contents

java.lang They are automatically imported. They include classes for primitive types, strings,

math functions, threads and exceptions

java.util Language utility classes such as vectors, hash tables, random numbers, date etc.

java.io They provide facilities for the input and output of data.

java.awt Set of classes for implementing GUI. They provide classes for windows, button,

lists, menus and so on.

java.net Classes for networking. They include classes for communicating with local

computers as well as with internet servers

java.applet Classes for creating and implementing applets.

Packages : Java API Packages
 Two ways of accessing the classes stored in a package.

 Use the fully qualified class name of the class that we want to use

 Example: java.awt.Color

 Import the package

 Syntax 1: import packagename.classname;

 Syntax 2: import packagename.*;

 Import statements must appear at the top of the file, before any
class declarations.

 Example : import java.awt.Color;

 Example: import java.awt.*;

 It brings all classes of java.awt package.

Packages : User Defined Packages
 Steps to create user defined packeges:

 Declare the package at the beginning of a file using the form :

package packagename;

 Define the class that is to be put in the package and declare it
public

 Create a subdirectory under the directory where the main source
files are stored. Subdirectory name must match the package name
exactly.

 Store the listing as the classname.java file in the subdirectory
created

 Compile the file. This create .class file in the subdirectory

Packages : User Defined Packages
 Example: package firstPackage;

public class FirstClass

{

(body of class)

}

 This file should be saved as a file called FirstClass.java , and
located in a directory named firstPackege under the current
working directory.

 A Java package file can have more than one class definitions. In
such cases, only one of the classes may be declare public and
that class name with .java extension is the source file name.

 If we omit the package statement, the class names are put into
the default package, which has no name.

Packages : User Defined Packages
 Java supports the concepts of package hierarchy.

 General form : package pkg1[.pkg2[.pkg3]];

 Example : package firstPackage.secondPackage;

 Store this package in a subdirctory names
firstPackage/secondPackage

 Syntax for Accessing a User Defined Package:

import package1[.package2][.package3].classname;

or

import packagename.*;

Output:

Class A

Class B

m=10

import package1.ClassA;

import package2.*;

class packageTest2

{

public static void main(String args[])

{

ClassA objectA=new ClassA();

ClassB objectB=new ClassB();

objectA.displayA();

objectB.displayB();

}

}

package package2;

public class ClassB

{

Protected int m=10;

public void displayB()

{

System.out.println(“Class B”);

System.out.println(“m=”+m);

}

}

package package1;

public class ClassA

{

public void displayA()

{

System.out.println(“Class A”);

}

}

ClassA.java

ClassB.java

PackageTest2.java

Packages : User Defined Packages
 When we import multiple packages it is likely that two or more

packages contain classes with identical names.

 Example:

 When we import and use these packages like:

package pack1;
public class Student
{……………………….}

package pack2;
public class Student
{……………………….}

import pack1.*;
import pack2.*;
Student Student1;// error

import pack1.*;
import pack2.*;
pack1.Student Student1;
pack2.Student Student2;

Correct

Packages : User Defined Packages
 It is possible to subclass a class that has been imported from

another package.

package package2;

public class ClassB

{

protected int m=10;

public void displayB()

{

System.out.println(“Class B”);

System.out.println(“m=”+m);

}

}

import package2.ClassB;

class ClassC extends ClassB

{ int n=20;

void display()

{

System.out.println(“Class C”);

System.out.println(“m=”+m);

System.out.println(“n=”+n);

}

}

class PackageTest3

{ public static void main(String args[])

{

ClassC objectC=new ClassC();

objectC.displayB();

objectC.displayC();

}

}

Output:

Class B

m=10

Class C

m=10

n=20

ClassB.java

PackageTest3.java

Packages : User Defined Packages
 If we want to create a package with multiple public classes in it,

follow the steps:

 Decide the name of the package

 Create a subdirectory with this name under the directory where
the main source files are stored.

 Create classes that are to be placed in the package in separate
source files and declare the package statement

package packagename;

at the top of each source file

 Switch to the subdirectory created earlier and compile each source
file. When compiled, the package would contain .class files of the all
source files.

Packages : Access Protection

 Private – only within class

 Default – it is visible to subclasses as well as to other classes in the same package.

 Protected – If you want to allow an element to be seen outside your current

package, but only to classes that subclass your class directly, then declare that element

protected.

 Public – can be accessed from anywhere

package p1;

public class Protection

{ int n = 1;

private int n_pri = 2;

protected int n_pro = 3;

public int n_pub = 4;

public Protection()

{ System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

package p1;

class Derived extends Protection

{

Derived()

{

System.out.println("derived

constructor");

System.out.println("n = " + n);

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

package p1;

class SamePackage

{ SamePackage()

{ Protection p = new Protection();

System.out.println("same package constructor");

System.out.println("n = " + p.n);

// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

Protection.java

Derived.java

SamePackage.java

package p2;

class Protection2 extends p1.Protection

{

Protection2()

{ System.out.println("derived other package constructor");

// System.out.println("n = " + n);

// System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

package p2;

class OtherPackage

{

OtherPackage()

{

p1.Protection p = new p1.Protection();

System.out.println("other package constructor");

// System.out.println("n = " + p.n);

// System.out.println("n_pri = " + p.n_pri);

// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}

Protection2.java

OtherPackage.java

Packages : User Defined Packages
 When we import a package into a file, all public classes are

imported.

 To hide few classes from external access, declare those as non
public.

 Example:

 The class Y can be seen and used only by the other classes in
the same package.

package p1;
public class X
{

//body of X
}
class Y
{

//body of Y
}

import p1.*;
X objectX; //correct
Y objectY; //error. Y is not available

Exception Handling
 An exception is an abnormal condition that arises in a code

sequence at run time.

 Type of Errors :

 Compile time errors
 These errors are detected and displayed by the Java compiler

 Most of the compile time errors are due to typing mismatch

 Ex: Missing ;, Mismatch of brackets, Misspelling of keywords and identifiers,
Missing double quotes in string etc.

 Run time errors
 Such programs may produce wrong results due to wrong logic or may

terminate due to errors such as stack overflow.

 Ex: dividing an integer by zero, Accessing an element that is out of the bounds
of an array, trying to save an element into an array of incompactible type etc.

 When such errors are encountered, Java generates an error message and aborts
the program.

Exception Handling : Exception Types
 Throwable is at the top of the exception class hierarchy.

Immediately below Throwable are two subclasses :

 Exception

 This class is used for exceptional conditions that user programs should
catch.

 Used to create our own custom exception types.

 There is an important subclass of Exception, called
RuntimeException. Exceptions of this type are automatically defined
for the programs that you write and include things such as division by
zero and invalid array indexing.

 Error

 These exceptions are not expected to be caught under normal
circumstances by our program.

 These are used by the Java run-time system to indicate errors having to
do with the run-time environment

 Ex: Stack overflow

Exception Handling
 When an exceptional condition arises, an object representing

that exception is created and thrown in the method that caused
the error

 Exceptions can be generated by

 The Java run-time system : due to the violation of the rules of Java
language or constraints of the Java execution environment

 Manually generated by our code

Exception Handling
 Uncaught Exceptions are handled by Java runtime system.

class Exc0

{

public static void main(String args[])

{

int d = 0;

int a = 42 / d;

}

}

Output:

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:6)

class Exc1

{

static void subroutine()

{

int d = 0;

int a = 10 / d;

}

public static void main(String args[])

{

Exc1.subroutine();

}

}

Output:

java.lang.ArithmeticException: / by zero

at Exc1.subroutine(Exc1.java:6)

at Exc1.main(Exc1.java:10)

Exception Handling
 Java exception handling is managed via five keywords:

 try : Program statements that we want to monitor for exceptions
are contained within a try block.

 throw : To manually throw an exception.

 throws : Any exception that is thrown out of a method must be
specified by a throws clause.

 catch : to catch exceptions and handle it in some rational manner.

 finally : Any code that absolutely must be executed before a
method returns is put in a finally block.

Exception Handling
 General Form : try

{

// block of code to monitor for errors

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType2

}

// ...

finally

{

// block of code to be executed before try block ends

}

ExceptionType is the
type of exception
that has occurred.

Exception Handling : try and catch

Output:

Division by zero.

After catch statement.

class Exc2

{

public static void main(String args[])

{

int d, a;

try // monitor a block of code.

{

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e)

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

Exception Handling : try and catch

 Enclose the code that we want to monitor inside a try block.

 Immediately following the try block, include a catch clause that
specifies the exception type that we wish to catch.

 Once an exception is thrown, program control transfers out of
the try block into the catch block. Execution never returns to
the try block from a catch.

 Once the catch statement has executed, program control
continues with the next line in the program following the entire
try/catch mechanism

Exception Handling : Multiple catch clauses
 More than one exception could

be raised by a single piece of
code.

 To handle this type of situation,
we can specify two or more
catch clauses, each catching a
different type of exception.

 When an exception is thrown,
each catch statement is
inspected in order, and the first
one whose type matches that of
the exception is executed.

 After one catch statement
executes, the others are
bypassed, and execution
continues after the try/catch
block.

class MultiCatch

{ public static void main(String args[])

{ try

{ int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Exception Handling : Multiple catch clauses

 The exception subclasses
must come before any of
their superclasses.

class SuperSubCatch

{ public static void main(String args[])

{ try

{

int a = 0;

int b = 42 / a;

}

catch(Exception e)

{

System.out.println("Generic Exception “);

}

/*/This catch is never reached

catch(ArithmeticException e)

{ // ERROR – unreachable

System.out.println(“Never reached.");

}

}

}

Exception Handling : nested try

 A try statement can be inside the block of another try.

 Each time a try statement is entered, the context of that
exception is pushed on the stack.

 If an inner try statement does not have a catch handler for a
particular exception, the stack is unwound and the next try
statement’s catch handlers are inspected for a match.

 This continues until one of the catch statements succeeds, or
until all of the nested try statements are exhausted.

 If no catch statement matches, then the Java run-time system
will handle the exception.

class NestTry

{ public static void main(String args[])

{ try

{ int a = args.length;

int b = 42 / a; // no command-line args, generate a divide-by-zero exception.

System.out.println("a = " + a);

try // nested try block

{

if(a==1) a = a/(a-a); // 1 cmd-line arg, generate a divide-by-zero exception

if(a==2)

{ int c[] = { 1 };

c [42] = 99; // generate an out-of-bounds exception

}

}

catch(ArrayIndexOutOfBoundsException e)

{ System.out.println("Array index out-of-bounds: " + e); }

}

catch(ArithmeticException e)

{ System.out.println("Divide by 0: " + e); }

}

}

Exception Handling : Implicitly nested try
class MethNestTry

{ static void nesttry(int a)

{ try // implicitly nested try block

{ if(a==1) a = a/(a-a); // division by zero

if(a==2)

{ int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

}

catch(ArrayIndexOutOfBoundsException e)

{ System.out.println("Array index out-of-bounds: " + e); }

}

public static void main(String args[])

{ try

{ int a = args.length;

int b = 42 / a;

System.out.println("a = " + a);

nesttry(a);

}

catch(ArithmeticException e)

{ System.out.println("Divide by 0: " + e); }

}

}

Exception Handling : throw

 To throw an exception explicitly

 Syntax : throw ThrowableInstance;

ThrowableInstance is an object of type Throwable or a subclass of
Throwable.

 The flow of execution stops immediately after the throw
statement.

 The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of the exception.

 If it does find a match, control is transferred to that statement.

 If not, then the next enclosing try statement is inspected, and so on.

 If no matching catch is found, then the default exception handler
halts the program and prints the stack trace.

class ThrowDemo

{ static void demoproc()

{ try

{

throw new NullPointerException("demo");

}

catch(NullPointerException e)

{

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[])

{ try

{

demoproc();

}

catch(NullPointerException e)

{

System.out.println("Recaught: " + e);

}

}

}

Output:

Caught inside demoproc.

Recaught:java.lang.NullPointerExcept

ion: demo

Unchecked Exception

Exception Handling : throws

 A throws clause lists the types of exceptions that a method
might throw.

 All exceptions (except those of type Error or
RuntimeException, or any of their subclasses) that a method
can throw must be declared in the throws clause.

 Syntax :

type method-name(parameter-list) throws exception-list

{

// body of method

}

Exception Handling : throws

This program contains an error and will not compile.

class ThrowsDemo

{

static void throwOne()

{

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[])

{

throwOne();

}

}

Checked Exception

Output:

inside throwOne

caught java.lang.IllegalAccessException: demo

class ThrowsDemo

{

static void throwOne() throws IllegalAccessException

{

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[])

{

try

{

throwOne();

}

catch (IllegalAccessException e)

{

System.out.println("Caught " + e);

}

}

}

Exception Handling : finally

 finally creates a block of code that will be executed after a
try/catch block has completed.

 finally block is used to handle any exception generated within a
try block which is not caught by any of the previous catch
statements.

 The finally block will execute whether or not an exception is
thrown.

 If an exception is thrown, the finally block will execute even if
no catch statement matches the exception.

 Any time a method is about to return to the caller from inside a
try/catch block, the finally clause is also executed just before
the method returns.

 The finally clause is optional. However, each try statement
requires at least one catch or a finally clause.

Exception Handling : finally
 Syntax :

try

{

………………

}

finally

{

……………..

}

try

{

………………

}

catch(){……………}

catch(){……………}

catch(){……………}

.

.

finally

{

……………..

}

class FinallyDemo

{

// Through an exception out of the method.

static void procA()

{ try

{

System.out.println("inside procA");

throw new RuntimeException("demo");

}

finally

{

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB()

{ try

{

System.out.println("inside procB");

return;

}

finally

{System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC()

{ try

{ System.out.println("inside procC"); }

finally

{ System.out.println("procC's finally"); }

}

public static void main(String args[])

{ try

{ procA(); }

catch (Exception e)

{ System.out.println("Exception caught"); }

procB();

procC();

}

}

Output :

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Exception Handling : Built in Exceptions

 java.lang, package contains several exception classes.

 Two types of exceptions:

 Unchecked exceptions

 Since java.lang is implicitly imported into all Java programs, most
exceptions derived from RuntimeException are automatically
available.

 They need not be included in any method’s throws list.

 The compiler does not check to see if a method handles or throws these
exceptions.

 Checked exceptions :

 Some exceptions are defined by java.lang that must be included in a
method’s throws list if that method can generate one of these
exceptions and does not handle it itself.

55

Java’s Unchecked RuntimeException Subclasses

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked

thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

Java’s Checked Exception Subclasses

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedExce

ption

Attempt to clone an object that does not implement

the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or

interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Exception Handling : User Defined Exceptions
class ExceptionDemo

{

static void compute(int a) throws MyException

{

System.out.println("Called compute(" + a + ")");

if(a > 10)

throw new MyException(a);

System.out.println("Normal exit");

}

public static void main(String args[])

{

try

{

compute(1);

compute(20);

}

catch (MyException e)

{System.out.println("Caught " + e);

}

}

}

class MyException extends Exception

{

private int detail;

MyException(int a)

{

detail = a;

}

public String toString()

{

return "MyException[" + detail + "]";

}

}

Output :
Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

